

Agrésearch with a Buman touch

Technology Demonstration Component

Krishi Vigyan Kendra- Phek Nagaland

ACTION PLAN 2022-23

National Initiative on Climate Resilient Agriculture

Details about the existing NICRA villages

S No	Details	Village 1	Village 2	Village 3	Village 4	Village 5
1	Name of the village	Thipuzu	K. Basa	Phusachodu	Kikruma	Pfutseromi
2	Involved in TDC	2011	2017	2018	2018	2022
3	Cultivated area (ha)	1322.08	1018.07	887.10	6671.84	470.19
4	Rainfed Area (ha)	1320.64	1017.17	885.90	6670.04	468.82
5	Irrigated Area (ha)	1.4	0.9	1.2	1.8	1.3
6	No. of households in the village	421	310	900	1190	618
7	Distance from KVK Phek	50 km	64 km	18 km	24 km	15 km

NICRA adopted Villages	Climate constraints	Resource /Crop/Animal constraints	Other constraints
Farming System	n Typologies: Rainfed Upland with	animal (Hills with steep slopes)	
THIPUZU	Erratic rain fall during Kharif and excess moisture stress in Rabi and windy	Crop- wilting/damping/ Plant nutrient loss/moisture stress Animal- Respiratory infections/viral disease	Soil erosion, mud slide, run off, Farm mechanization, high input cost, organic farming, lack of agricultural policy
KIKRUMA	Thunder storm, wind storm, Excess rainfall during Kharif and drought during Rabi	Crop- wilting/damping/ Plant nutrient loss/moisture stress Animal- Respiratory infections/viral disease	Soil erosion, mud slide, run off, m Farm mechanization, high input cost, organic farming, lack of agricultural policy
PFUTSEROMI	Erratic rain fall, terminal drought, hailstones and moisture stress during Rabi , Thunder storm	Crop- wilting/damping/ Plant nutrient loss/moisture stress Animal- Respiratory infections/viral disease	Soil erosion, mud slide, run off, Farm mechanization, high input cost, organic farming, lack of agricultural policy
PHUSACHODU	Excess rainfall during Kharif and drought during Rabi and Hailstones and windy	Crop- wilting/damping/ Plant nutrient loss/moisture stress Animal- Respiratory infections/viral disease	Soil erosion, mud slide, run off, Farm mechanization, high input cost, organic farming, lack of agricultural policy
K. BASA	Excess rainfall during Kharif and drought during Rabi and Hailstones and windy	Crop- wilting/damping/ Plant nutrient loss/moisture stress Animal- Respiratory infections/viral disease	Soil erosion, mud slide, run off, high input cost, damage of crops by Mithun

NICRA adopted Villages	Climate constraints	Resource /Crop/Animal constraints	Other constraints
Farming System	Typologies: Rainfed Upla	and without animal (Hills with ste	ep slopes)
THIPUZU	Erratic rain fall during Kharif and excess moisture stress in Rabi and windy	Crop- wilting/damping/ Plant nutrient loss/moisture stress Animal- Respiratory infections/viral disease	Soil erosion, mud slide, run off, Farm mechanization, high input cost, organic farming, lack of agricultural policy
KIKRUMA	Thunder storm, wind storm, Excess rainfall during Kharif and drought during Rabi	Crop- wilting/damping/ Plant nutrient loss/moisture stress Animal- Respiratory infections/viral disease	Soil erosion, mud slide, run off, m Farm mechanization, high input cost, organic farming, lack of agricultural policy
PFUTSEROMI	Erratic rain fall, terminal drought, hailstones and moisture stress during Rabi , Thunder storm	Crop- wilting/damping/ Plant nutrient loss/moisture stress Animal- Respiratory infections/viral disease	Soil erosion, mud slide, run off, Farm mechanization, high input cost, organic farming, lack of agricultural policy
PHUSACHODU	Excess rainfall during Kharif and drought during Rabi and Hailstones and windy	Crop- wilting/damping/ Plant nutrient loss/moisture stress Animal- Respiratory infections/viral disease	Soil erosion, mud slide, run off, Farm mechanization, high input cost, organic farming, lack of agricultural policy
K. BASA	Excess rainfall during Kharif and drought during Rabi and Hailstones and windy	Crop- wilting/damping/ Plant nutrient loss/moisture stress Animal- Respiratory infections/viral disease	Soil erosion, mud slide, run off, high input cost

NICRA adopted Villages	Climate constraints	Resource /Crop/Animal constraints	Other constraints
Farming System Typ	ologies: Rainfed Midland	with animal (Hills with mild slopes)	
THIPUZU	Erratic rain fall during Kharif and excess moisture stress in Rabi and windy	Crop- wilting/damping/ Plant nutrient loss/moisture stress Animal- Respiratory infections/viral disease	Soil erosion, mud slide, run off , organic farming
KIKRUMA	Water stress, erratic rain fall during Kharif and excess moisture stress in Rabi and windy, hailstones	Crop- wilting/damping/ Plant nutrient loss/moisture stress Animal- Respiratory infections/viral disease	Soil erosion, wind erosion, mud slide, run off, lack of storage facility, organic farming, lack of agricultural policy
PFUTSEROMI	Erratic rain fall, terminal drought, hailstones and moisture stress during Rabi	Crop- wilting/damping/ Plant nutrient loss/moisture stress Animal- Respiratory infections/viral disease	Soil erosion, mud slide, run off, organic farming, lack of agricultural policy, lack of storage facility
PHUSACHODU	Excess rainfall during Kharif and drought during Rabi and Hailstones and windy	Crop- wilting/damping/ Plant nutrient loss/moisture stress Animal- Respiratory infections/viral disease	Soil erosion, mud slide, run off, Farm mechanization, high input cost, organic farming, lack of agricultural policy
K. BASA	Excess rainfall during Kharif and drought during Rabi and Hailstones and windy	Crop- wilting/damping/ Plant nutrient loss/moisture stress Animal- Respiratory infections/viral disease	Soil erosion, mud slide, run off, lack of storage facility , organic farming,

NICRA adopted Villages	Climate constraints	Resource /Crop/Animal constraints	Other constraints
Farming System	Typologies: Rainfed Midland wi	thout animal (Hills with mild slopes)	
THIPUZU	Erratic rain fall during Kharif and excess moisture stress in Rabi and windy	Crop- wilting/damping/ Plant nutrient loss/moisture stress Animal- Respiratory infections/viral disease	Soil erosion, mud slide, run off , organic farming
KIKRUMA	Water stress, erratic rain fall during Kharif and excess moisture stress in Rabi and windy, hailstones	Crop- wilting/damping/ Plant nutrient loss/moisture stress Animal- Respiratory infections/viral disease	Soil erosion, wind erosion, mud slide, run off, lack of storage facility , organic farming, lack of agricultural policy
PFUTSEROMI	Erratic rain fall, terminal drought, hailstones and moisture stress during Rabi	Crop- wilting/damping/ Plant nutrient loss/moisture stress Animal- Respiratory infections/viral disease	Soil erosion, mud slide, run off, organic farming, lack of agricultural policy, lack of storage facility
PHUSACHODU	Excess rainfall during Kharif and drought during Rabi and Hailstones and windy	Crop- wilting/damping/ Plant nutrient loss/moisture stress Animal- Respiratory infections/viral disease	Soil erosion, mud slide, run off, Farm mechanization, high input cost, organic farming, lack of agricultural policy
K. BASA	Excess rainfall during Kharif and drought during Rabi and Hailstones and windy	Crop- wilting/damping/ Plant nutrient loss/moisture stress Animal- Respiratory infections/viral disease	Soil erosion, mud slide, run off, lack of storage facility , organic farming,

Farming System Typologies: Rainfed Upland with animal (Hills with steep slopes)

NICRA adopted Village	Climate constraints	Resource /Crop/Animal constraints
THIPUZU	Erratic rain fall during Kharif and excess moisture stress in Rabi and windy	 Rain water harvesting through <i>Jalkund</i> for off season vegetable cultivation in Broccoli and cabbage Zero tillage using drought tolerant garden pea varieties
KIKRUMA	Thunder storm, wind storm, Excess rainfall during Kharif and drought during Rabi	 Zero tillage using drought tolerant garden pea varieties Short duration millet cultivation Organic management in turmeric
PFUTSEROMI	Erratic rain fall, terminal drought, hailstones and moisture stress during Rabi , Thunder storm	 Rain water harvesting through <i>Jalkund</i> for off season vegetable cultivation Zero tillage using drought tolerant garden pea varieties (SRI) using short duration paddy varieties
PHUSACHODU	Excess rainfall during Kharif and drought during Rabi and Hailstones and windy	 Zero tillage using drought tolerant field pea varieties Straw mulching in garden pea.
K. BASA	Excess rainfall during Kharif and drought during Rabi and Hailstones and windy	 Zero tillage using drought tolerant field pea varieties Straw mulching in garden pea. Organic management in turmeric.

Farming System Typologies: Rainfed Upland without animal (Hills with steep slopes)

NICRA adopted Village	Climate constraints	Resource /Crop/Animal constraints
THIPUZU	Erratic rain fall during Kharif and excess moisture stress in Rabi and windy	 Rain water harvesting through <i>Jalkund</i> for off season vegetable cultivation in Broccoli and cabbage Zero tillage using drought tolerant garden pea varieties
KIKRUMA	Thunder storm, wind storm, Excess rainfall during Kharif and drought during Rabi	 Short duration millet cultivation Potato treatment with bio-fertilizer . Organic management in turmeric
PFUTSEROMI	Erratic rain fall, terminal drought, hailstones and moisture stress during Rabi , Thunder storm	 Rain water harvesting through <i>Jalkund</i> for off season vegetable cultivation (SRI) using short duration paddy varieties
PHUSACHODU	Excess rainfall during Kharif and drought during Rabi and Hailstones and windy	1. Zero tillage using drought tolerant field pea varieties
K. BASA	Excess rainfall during Kharif and drought during Rabi and Hailstones and windy	1. Advancement of sowing time and sowing method in soybean

Farming System Typologies: Rainfed Midland with animal (Hills with mild slopes)

NICRA adopted Village	Climate constraints	Resource /Crop/Animal constraints
THIPUZU	Erratic rain fall during Kharif and excess moisture stress in Rabi and windy	 Rain water harvesting through <i>Jalkund</i> for off season vegetable cultivation in Broccoli and cabbage Zero tillage using drought tolerant garden pea varieties
KIKRUMA	Water stress, erratic rain fall during Kharif and excess moisture stress in Rabi and windy, hailstones	 Zero tillage using drought tolerant field pea varieties Potato treatment with bio-fertilizer and organic management in turmeric
PFUTSEROMI	Erratic rain fall, terminal drought, hailstones and moisture stress during Rabi	 Rain water harvesting through <i>Jalkund</i> for off season vegetable cultivation Zero tillage using drought tolerant garden pea varieties (SRI) using short duration paddy varieties
PHUSACHODU	Excess rainfall during Kharif and drought during Rabi and Hailstones and windy	1. Zero tillage using drought tolerant garden pea varieties
K. BASA	Excess rainfall during Kharif and drought during Rabi and Hailstones and windy	1. (SRI) using short duration paddy varieties

Farming System Typologies: Rainfed Upland without animal (Hills with mild slopes)

NICRA adopted Village	Climate constraints	Resource /Crop/Animal constraints
THIPUZU	Erratic rain fall during Kharif and excess moisture stress in Rabi and windy	 Rain water harvesting through <i>Jalkund</i> for off season vegetable cultivation in Broccoli and cabbage Advancement of sowing time and sowing method in soybean
KIKRUMA	Water stress, erratic rain fall during Kharif and excess moisture stress in Rabi and windy, hailstones	 Zero tillage using drought tolerant garden pea varieties Zero tillage using drought tolerant field pea varieties Potato treatment with bio-fertilizer and organic management in turmeric
PFUTSEROMI	Erratic rain fall, terminal drought, hailstones and moisture stress during Rabi	 Rain water harvesting through <i>Jalkund</i> for off season vegetable cultivation Advancement of sowing time and sowing method in soybean
PHUSACHODU	Excess rainfall during Kharif and drought during Rabi and Hailstones and windy	1. Zero tillage using drought tolerant field pea varieties
K. BASA	Excess rainfall during Kharif and drought during Rabi and Hailstones and windy	1. Zero tillage using drought tolerant field pea varieties

Module 1: Natural Resource Management (Details of Technologies to be up-scaled)

1. Name of the technology	Rain water harvesting through <i>"Jalkund</i> ' for off season vegetable cultivation
2. Objectives of study	To assess the water storage capacity and irrigation of winter vegetables.
3. Problem diagnosis	Water scarcity during lean season (winter) for crop cultivation.
4. Comparisons/treatments a) Farmers practice	Farmers dependent on rainfed agriculture
b) Improved technology	Jalkund (size-5x4x2 cu. m) (300 micron) can store rain water upto 40,000 litres . Harvested water used for agricultural use for 0.34 ha/Jalkund during lean season. Winter vegetables-Broccoli and cabbage
Number of unit to be replicated in convergence from (with other stake holders)	5
Observation	 Quantity of water stored during lean period Water use efficiency BC ratio

Module 1: Natural resource management (Details of Technologies to be up-scaled)

1. Name of the technology	Resource management using Biofertilizers and Straw Mulch in Garden Pea
2. Objectives of study	To assess the growth, yield and soil parameters
3. Problem diagnosis	Low moisture content and Low soil nutrient status
4. Comparisons/treatments a) Farmers practice	Without mulch
b) Improved technology	Garden Pea Var. Arkel Biofertilizer : Rhizobium and Phosphotika @ 200 gm each per 10 kg seed Use of straw as mulch material (paddy straw)
Number of unit to be replicated in convergence from (with other stake holders)	5
Observation	 Growth and yield Soil parameters BC ratio

Module 1: Natural resource management (Details of Technologies to be up-scaled)

1. Name of the technology	Resource management using Biofertilizers in Turmeric
2. Objectives of study	To assess the growth, yield and soil parameters
3. Problem diagnosis	Low soil nutrient status
4. Comparisons/treatments a) Farmers practice	Without biofertilizers
b) Improved technology	Turmeric Var. Megha Turmeric 1 Biofertilizer- Azotobacter and Phosphotika biofertilizer @5 kg/ha+ neem cake@ 100 kg/ha vermicompost@ 0.5t/ha
Number of unit to be replicated in convergence from (with other stake holders)	5
Observation	 Growth and yield Soil parameters BC ratio

Module 1: Natural resource management (Details of Technologies to be up-scaled)

1. Name of the technology	Resource management using Biofertilizers in Potato (2 nd Year)
2. Objectives of study	To assess the growth, yield and soil parameters
3. Problem diagnosis	Low soil nutrient status
4. Comparisons/treatments a) Farmers practice	Without biofertilizers
b) Improved technology	Potato Var. Kufri Girdhari, Biofertilizer- Azotobacter and Phosphotika biofertilizer @4kg each per ha
Number of unit to be replicated in convergence from (with other stake holders)	5
Observation	 Growth and yield Soil parameters BC ratio

1. Name of the technology	Water saving method in paddy cultivation (System of rice intensification)
2. Objectives of study	To study the growth and yield of short duration varieties in paddy To study the economics
3. Problem diagnosis	Low yield and long duration of local cultivar
4. Comparisons/treatments a) Farmers practice	Conventional method
b) Improved technology	TO1 - CAUR1 TO2 - CAU R3 TO3 - RCM 11 TO4 - Farmers practice (CAU R1) Seed rate - 10 kg/ha Spacing - 20 X 20 cm MOT - June
Number of unit to be replicated in convergence from (with other stake holders)	3
Observation	Growth and yield of short duration varieties BC ratio

1. Name of the technology	Zero tillage in early varieties of garden pea
2. Objectives of study	To popularize early varieties of garden pea To study the growth and yield To study the economics
3. Problem diagnosis	Local long duration variety vulnerable to terminal stress
4. Comparisons/treatments a) Farmers practice	Tilling the soil
b) Improved technology	TO 1 – Arka Priya TO 2 – Arka Mayur TO 3 – Arkel (control) Seed rate – 80 kg/ha Spacing – 60 X 20 cm MOT – October
Number of unit to be replicated in convergence from (with other stake holders)	5
Observation	Growth and yield BC ratio

1. Name of the technology	Zero tillage in drought tolerant field pea varieties
2. Objectives of study	To popularize drought tolerant field pea varieties To study the growth and yield of short duration varieties To study the economics
3. Problem diagnosis	Local long duration variety vulnerable to terminal stress
4. Comparisons/treatments a) Farmers practice	Tilling the soil
b) Improved technology	TO 1 – Aman TO 2 – VL Matar 47 TO 3 – Prakash TO 4 – Aman (control) Seed rate – 80 kg/ha Spacing – 60 X 20 cm MOT – October
Number of unit to be replicated in convergence from (with other stake holders)	5
Observation	Growth and yield BC ratio

1. Name of the technology	Advancement of date of sowing and sowing methods in soybean
2. Objectives of study	To study the growth and yield of short duration varieties To study the economics
3. Problem diagnosis	Low yield in local cultivar and haphazard sowing methods
4. Comparisons/treatments a) Farmers practice	Date of sowing – 15 th of May Method of sowing – Dibbling
b) Improved technology	Date of sowing – 1 st of May, 30 th of May Method of sowing – Line sowing Variety – MACS 1460 Seed rate – 80 kg/ha Spacing – 45 X 10 cm
Number of unit to be replicated in convergence from (with other stake holders)	5
Observation	Growth and yield BC ratio

1. Name of the technology	Cultivation of short duration Foxtail Millet
2. Objectives of study	To study the growth and yield To study the economics
3. Problem diagnosis	Low yield due to bird attack and long duration of crop in local cultivar
4. Comparisons/treatments a) Farmers practice	Month of sowing - February/March
b) Improved technology	Date of sowing – August Variety – SiA 3085 Seed rate – 8 kg/ha Spacing – 30 X 10 cm
Number of unit to be replicated in convergence from (with other stake holders)	5
Observation	Growth and yield BC ratio

CAPACITY BUILDING (HRD) ACTIVITIES (2022-2023)

SI.	Title		No. of Participants		
No	Title	Male	Female	Total	
1	Production technology in millet (2 nos)	20	20	40	
2	Water saving technology (SRI) in paddy (4 nos)	40	40	80	
3	Production technology in soybean (3 nos)	30	30	60	
4	Conservation agriculture in field pea (7 nos)	70	70	140	
5	Conservation agriculture in garden pea (8 nos)	80	80	160	
6	Training on Organic cultivation in Turmeric (2 nos)	30	20	50	
7	Training on Garden pea cultivation (5 nos)	20	105	125	
8	Training on Natural farming (5 nos)	50	75	125	
9	Training on Low cost water harvesting (2nos)	10	15	25	
	Total	220	325	545	

EXTENSION ACTIVITIES (METHOD DEMONSTRATION, FIELD DAY, KISAN GHOSTHI ETC) (2022-23)

SI. No	Title	No. of programmes
1	Kisan Gosthi on SRI	1+
2	Exposure visit	1+
3	Field days	10 +
4	Method demonstrations	10 +
5	Diagnostic Visits	10 +
6	Mobile Advisory Services	36 +
	Total	

BUDGET REQUIREMENT

S. No	Items of Expenditure	Budget required (Rs)
1	Non-recurring contingencies – Equipment Proposal for Procurement of farm machinery/ implements for Custom Hiring centre	300000.00
2	NRM	242400.00
3	Crop production	115350.00
4	Capacity Building Activities	26400.00
5	Extension Activities	83500.00
6	Contractual Manpower (YP II) @ Rs 35000.00 per month	420000.00
7	Media Products to be developed (video films/brochures/bulletins proposed to be developed)	25000.00
8	TA and vehicle hire charges, POL	150000.00
9	Other operational expenses	70000.00
	TOTAL	

